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Abstract—Wayfinding signs play an important role in guiding users to navigate in a virtual environment and in helping pedestrians to
find their ways in a real-world architectural site. Conventionally, the wayfinding design of a virtual environment is created manually, so
as the wayfinding design of a real-world architectural site. The many possible navigation scenarios, as well as the interplay between
signs and human navigation, can make the manual design process overwhelming and non-trivial. As a result, creating a wayfinding
design for a typical layout can take months to several years. In this paper, we introduce the Way to Go! approach for automatically
generating a wayfinding design for a given layout. The designer simply has to specify some navigation scenarios; our approach will
automatically generate an optimized wayfinding design with signs properly placed considering human agents’ visibility and possibility of
making mistakes during a navigation. We demonstrate the effectiveness of our approach in generating wayfinding designs for different
layouts such as a train station, a downtown and a canyon. We evaluate our results by comparing different wayfinding designs and show
that our optimized wayfinding design can guide pedestrians to their destinations effectively and efficiently. Our approach can also help
the designer visualize the accessibility of a destination from different locations, and correct any “blind zone” with additional signs.

Index Terms—wayfinding, navigation, procedural modeling, level design, spatial orientation

F

1 INTRODUCTION

IMAGINE walking in a subway station with no wayfinding
signs. How could you walk to the right platform after you

buy your ticket? After some random trials, you might finally
find your way to the platform, but this probably would not
be a pleasant experience. You would have saved much time
and energy if wayfinding signs had been placed properly
in the environment to guide you through. A layout with no
wayfinding signs is as confusing as a maze.

In “The VR Book” [1], Jerald points out that wayfind-
ing aids are especially important in virtual environments
because it is very easy to get disoriented throughout a navi-
gation in a virtual space. A well-constructed environment
should include environmental wayfinding aids thought-
fully put by the level designers, considering the possible
navigation and the navigation goals of the user. Recently,
interesting experiments by Darken and Peterson [2] verify
that most users would feel rather uncomfortable being in a
largely void virtual environment, and that it is important to
regularly reassure the users that they are not lost throughout
a navigation.

Conventionally, level designers mainly rely on expe-
rience or a “common sense approach” [3] in creating a
wayfinding design. Given an environment, they think of all
likely navigation scenarios that the user will go through and
then place wayfinding signs or other aids to guide the user
accordingly. For example, for a train station, one common
scenario is to walk from the ticket machine, through the
gate, and then to the right platform. Another common
scenario is to walk from the platform to the exit. Directional
signs are then placed along the routes. While this design ap-
proach is straightforward, the efforts required will quickly
become daunting when the number of scenarios scales up
as in a real-world situation. For example, a real-world train
station typically involves tens or more navigation scenarios.
Moreover, when placing the signs, it is necessary to consider
the user’s visibility and the fact that the user may miss a sign
or make mistakes throughout the navigation. Designing a
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wayfinding scheme that jointly considers all these factors
is highly non-trivial and challenging, while a sub-optimal
wayfinding scheme may easily result in a confusing and
frustrating navigation experience of the users.

To tackle these problems, in this work we introduce a
novel computational approach to automatically generate a
wayfinding design for a given environment. To use our
approach, the designer simply specifies all the navigation
scenarios likely to be taken by the users. Our approach
will then generate a wayfinding design to accommodate
the needs of all the scenarios while considering a number
of desirable factors relevant to the navigation experience
and management convenience. Through agent-based sim-
ulations, our approach further refines the locations of the
wayfinding signs by considering visibility and robustness
with respect to the possible mistakes made by the users
throughout their navigation. After generating a wayfinding
design, the designer can gain further insights of the design
by visualizing the accessibility of a destination from any
other locations in the environment, and remove any blind
zones (if necessary) by adding more signs and re-triggering
the optimization.

In a real-world architectural site, typical wayfinding aids
include signs, landmarks and GPS-based mobile naviga-
tion system. In a virtual environment, additional virtual
wayfinding aids such as compasses [1] and mini-maps [4]
can also be used to facilitate wayfinding. In this work, we
focus on generating signs to guide the user because: 1) signs
are a very common and universal mean for wayfinding;
2) signs as wayfinding aids are direct yet subtle—the user
usually does not need to stop walking while reassuring his
direction with a sign he sees on his way, in contrast to using
other wayfinding aids such as a map which requires the user
to stop his locomotion; 3) signs integrate naturally with most
indoor and outdoor environments.

The major contributions of our work include:
• introducing a novel optimization and agent-based ap-

proach for automatically generating wayfinding de-
signs.

• demonstrating the capability of our approach for gen-
erating wayfinding designs for different layouts.

• showing how our approach can be further applied for
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visualizing and editing a generated wayfinding design.
• evaluating the effectiveness of our automatically gener-

ated wayfinding designs in guiding the navigation of
users by comparing with other wayfinding designs.

Additionally, we implement our approach as a handy
plugin of the Unity game engine, which can be used by
game level designers to automatically and quickly generate
wayfinding schemes for their virtual worlds, hence saving
their time and manual efforts spent on determining users’
paths and placing wayfinding signs. We will release the
plugin for public use.

2 RELATED WORK

To the best of our knowledge, there is no existing work
on automatically generating wayfinding designs for a given
layout. We review some relevant work in wayfinding design
for real-world and virtual environments. We also review
some work in sign perception, navigation and path planning
which bring useful insights about the human factors to
consider in a wayfinding design.

2.1 Conventional Wayfinding Design
We give a succinct overview of the real-world wayfinding
design process, which inspires our computational approach
for generating wayfinding design.

In architectural design, wayfinding refers to the user
experience of orientation and choosing paths within a built
environment, which usually relates to the user’s needs or
the attractiveness of the places and streets in the environ-
ment [5], [6]. In the book The Image of the City [7], Lynch
defined wayfinding as the “consistent use and organization
of definite sensory cues from the external environment”.
Environmental psychologists later extended the definition
of wayfinding to include also the use of signage and other
graphical and visual clues that aid orientation and naviga-
tion in built environments [8].

The process of wayfinding—how humans walk to their
destinations in an unfamiliar environment—involves four
major steps [9]: orientation, path decision, path monitoring and
destination recognition. Orientation refers to determining one’s
current location. Path decision refers to selecting paths to
navigate to the destination. Path monitoring refers to continu-
ously verifying that the path indeed leads to the destination.
Finally, destination recognition refers to confirming that the
destination has been reached. Our goal in this work is to
automatically generate a wayfinding design for a given
environment to facilitate the above wayfinding steps.

Today almost all public spaces and private premises
require a wayfinding scheme [10] to ensure that they are
universally accessible for all users [11]. To achieve this
goal, after a layout is designed by architects, a wayfinding
design team [12] will decide about the wayfinding signs
to put in the environment. In current practice, the design
team manually creates a wayfinding scheme following a
“Common Sense Approach” mainly based on experience [3],
[13]. Given a new premises such as a train station, designers
create a wayfinding scheme following these major steps:

1) Identifying Major Paths: The design team first identifies
the major paths likely to be taken by pedestrians, by
experience or surveys with the property managers. The
team examines the site’s floor plan or make an on-site
inspection to estimate people flows [12]. The goal is to
gain a comprehensive understanding of the site.

2) Devising a Wayfinding Scheme: Considering all the
major paths, the design team determines the types

Fig. 1: Circulation analysis and wayfinding scheme of a concert
hall manually created by a wayfinding designers, including projected
circulation paths and sign types. Courtesy of ArchitectureWeek.

and locations of the wayfinding signs, which should
be placed at an appropriate height and angle clearly
visible to pedestrians. Additional signs should be
placed to eliminate any possible confusion caused by
the architecture itself. As an example, Figure 1 shows
the circulation analysis and a wayfinding scheme
manually created for a concert hall.

3) Designing, Fabricating and Placing Signs: After
devising the sign placement, the designers design
the appearance of the signs to be manufactured and
placed in the real environment.

4) Evaluation, Maintenance and Update: The team maintains
the wayfinding signs in a database and reviews the sign
placement periodically to replace any outdated signs.

Interested readers may refer to the literature [10], [12],
[14] for more detail of the design process. Similar to the
real-world wayfinding design process, our computational
approach focuses on automatically identifying locations for
placing signs in an environment according to the designer-
specified navigation goals of the pedestrians.

2.2 Wayfinding Design for Virtual Environments

Wayfinding aids are crucial in virtual environments because
they help users form cognitive maps, maintain a sense of
position and direction of travel, and find their ways to
their destinations [1]. Common wayfinding aids in virtual
environments include signs, maps, landmarks, light, and
paths [1], [15]. In designing a highly immersive and steer-
able virtual environment, it is important for level designers
to make use of wayfinding aids effectively to enhance spatial
understanding of the environment so that users can com-
prehend and operate smoothly [1], [16]. This principle also
applies to game level design. In his book, game designer
Michael Salmond emphasizes the use of a road sign system
in games as an important wayfinding tool to provide players
with a highly immersive navigation experience [17]. Figure 2
shows some example road signs used in the popular video
games Fallout 4 and the Elder Scrolls IV: Oblivion.
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(a) Fallout 4 (b) The Elder Scrolls IV: Oblivion

Fig. 2: Example road signs used in video games.

In current practice, wayfinding aids are manually added
to a virtual environment by level designers and then em-
pirically tested for effectiveness, which depends on the
quantity and quality of wayfinding aids provided to users,
yet research found that it could be overwhelming to users if
exposed to too many wayfinding aids [18].

Darken and Sibert conducted an important study [19]
about the wayfinding strategies and behaviors of human
users in large virtual worlds. Their experiments verified
that human wayfinding strategies and behaviors in large
virtual worlds are strongly influenced by environmental
cues. Their experiments asserted that humans generally adopt
physical world wayfinding strategies in large virtual worlds,
hence common wayfinding aids in the physical world can be
effectively applied to facilitate wayfinding in virtual worlds.
Based on the insights, Cliburn and Rilea [20] conducted a
further study to compare human performance in searching
for an object in a virtual environment with no aid present,
with maps and with signs. The results show that subjects
who navigated the virtual environment with the aid of signs
achieve superior performance than under other conditions.
These findings motivate us to investigate the automatic
propagation of directional signs in virtual environments to
enhance wayfinding.
Wayfinding Map Generation. In computer graphics, there
are interesting approaches for automatically generating
tourist brochures [21] and destination maps [22]. Though
these maps are intended for real-world navigation use, they
could potentially be used to assist navigation in virtual
environments. Given a map and some desired destinations,
these approaches select a subset of roads to reach the des-
tinations, and visualize the important routing instructions
on a generated map which is intuitive to use. Our approach
is inspired by these approaches, but focuses on optimizing
the placement of wayfinding signs in the layout so as to
guide pedestrians to reach their destinations easily. Com-
bining automatically generated maps with the wayfinding
signs generated by our approach can potentially provide
users with effective wayfinding aids to navigate smoothly
in virtual environments.

2.3 Perception, Path Planning and Navigation
Our wayfinding design approach is also inspired by how
humans perceive and navigate in everyday environments.
Perception. In everyday environments, humans continually
shift their gaze to retrieve wayfinding cues for making
navigation decisions [23], [24], [25]. Human visual attention
is known to be attracted by low-level features such as
changes in color, intensity, orientation and contrast [26], and
by high-level scene context [25]. Some particular categories
of objects, such as signs and texts [27], [28], [29], are known
to strongly attract eye fixations regardless of their low-
level visual saliency. Therefore, we focus on optimizing the
placement of wayfinding signs in our approach.
Path Planning and Navigation. Given a layout, there are
usually multiple paths a pedestrian can take to navigate

from a starting point to a destination. For instance, suppose
a hiker wants to walk from the bottom to the top of a hill.
He may walk a path which is mostly straight, or a shortcut
with sharp turns. A common strategy for path planning is
to design a cost function to evaluate each path, and then
search for a path that corresponds to a low cost [30], [31],
[32], [33]. For a low-dimensional configuration space, a grid-
based search such as A* [34] or D* [35] can be applied to
find an optimal path. For a high-dimensional configuration
space, sampling-based approaches [36], [37] are commonly
applied to find an optimal or near-optimal solution.

For path planning, common navigation factors to con-
sider in the cost function involve: 1) path length (one wants
to choose a short path to reduce the travel time needed to
reach the destination); 2) number of turns (one wants to
minimize the number of turns to reduce the complexity of
the route [22], [38]); 3) number of decision points (each inter-
section is a decision point where the pedestrian will need to
decide which road to follow next; one wants to minimize the
number of decision points to reduce the chance of making
mistakes). Arthur and Passini [39] noted that the number of
decision points has an important influence on the difficulty
of performing wayfinding. Casakin et al. conducted empiri-
cal studies [40] which further verify these observations. We
consider these criteria in the generation of our wayfinding
designs, after which we will place the wayfinding signs and
refine the placement based on agent’s properties. Moreover,
the designer can control the importance of each criterion by
adjusting its associated weight. Our approach will generate
a wayfinding design accordingly.
Navigation Mistakes. Humans occasionally make mistakes
in navigation. For example, it is common for pedestrians
to miss a sign due to occlusion by other pedestrians; dis-
tractions such as advertisements or events happening in
the environment [41], [42]; or a wrongly recognized sign or
landmark [43]. It is also common for pedestrians to make
wrong turns in navigation [42]. A well-thought-through
wayfinding design should tolerate these kinds of human
mistakes [19], [39]—a pedestrian should still be able to reach
to his destination even if he makes mistakes occasionally.
Agent-based Evaluation. Martin Raubal [44] used agent-
based simulation to evaluate human wayfinding in un-
familiar environments, yet the simulation used does not
consider the mistakes that can be made by the agents;
further, it is unsure how such evaluations can be used to
enable automatic sign placement. In contrast, our agent-
based simulations consider navigation mistakes and we
also show how such simulations can be used to create a
robust wayfinding design. Our approach is also motivated
by autonomous agents [45] and crowd simulations [46],
[47], [48]. However, instead of generating realistic agent
simulations, we focus on applying agent-based simulations
for optimizing wayfinding designs.

To achieve a robust wayfinding design, our approach
conducts agent-based simulations in placing the signs to
evaluate how well the design can tolerate occasional mis-
takes made by agents. Using our approach, the designer can
control how robust the generated wayfinding design needs
to be by changing the agent parameters. For example, in
creating the wayfinding design for a subway station where
the pedestrians (many of whom are first-time visitors) are
generally expected to be unfamiliar with the environment,
the designer can adjust the agents to have a higher chance in
making mistakes. Our approach will generate a more robust
wayfinding design by placing signs in important locations
so that pedestrians can still find their ways despite the
mistakes.
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Fig. 3: Overview of our approach. (a–b) An input layout is first converted into a graph representation. (c) A wayfinding
scheme optimization is then performed to find the optimized paths from the entrance to the points of interests, considering
wayfinding criteria such as path lengths, angles and number of decision points. (d) An agent-based sign refinement
subsequently takes place, which employs agent-based simulations to evaluate and refine the sign placement according to
the navigation properties of agents mimicking human pedestrians.

2.4 Computational Layout Design
Layout design is an important problem in computer graph-
ics. A layout typically consists of a number of sites con-
nected by paths, with each site serving a different purpose.
Computer-generated layouts can be used for creating virtual
environments where virtual agents and human users can
navigate for simulation and entertainment purposes. Galin
et al. proposed to generate roads procedurally given a natu-
ral landscape with river and hills [32]. Computationally gen-
erated layouts can also be used for architectural design [49],
[50], [51] and urban planning [52], [53], [54], [55]. Refer to
the survey [56] by Smelik et al. for a comprehensive review
of the state-of-the-art procedural modeling techniques for
generating layout designs for virtual environments.

An important consideration in designing a layout is the
navigation experience of the pedestrians. Recently, Feng et
al. proposed an approach [57] which uses crowd simula-
tion to generate mid-scale layouts optimal with respect to
human navigation properties such as mobility, accessibility
and coziness. However, concerning navigation, one impor-
tant consideration is missing: the wayfinding experience of
the pedestrians in the generated environments. We argue
that their generated layouts are navigation-aware only if
wayfinding signs are properly placed in the layouts.

In this regard, we consider our automatic wayfinding de-
sign approach as complementary to automatic layout design
or road network generation approaches. The wayfinding
signs automatically generated by our approach can enhance
the navigation experience of users in virtual environments,
as we show in our experiments.

3 OVERVIEW
Figure 3 shows an overview of our approach. We use a
layout called City as our illustrative example to describe
our approach. Our approach works on a graph representing
an input layout. It consists of two major steps: Wayfinding
Scheme Optimization and Agent-based Sign Refinement. In the
Wayfinding Scheme Optimization step, our approach deter-
mines the paths for pedestrians to walk from the starting
points to the destinations under different navigation scenar-
ios specified by the user. Different human-centered naviga-
tion criteria such as turning angles and walking distances
are jointly considered through an optimization to determine
the paths to take. In the Agent-based Sign Refinement step, our
approach places wayfinding signs strategically at appropri-
ate locations along the paths. By using agent-based simu-
lations to evaluate sign placement, our approach takes into
account different human properties such as visibility and the
possibility of making navigation mistakes. Depending on
the requirements of the navigation scenarios, the designer
can easily generate a wayfinding design that satisfies the
domain-specific requirements, by changing the weights of

different criteria in the wayfinding scheme optimization and
the parameters of the agent-based simulations.

4 PROBLEM FORMULATION
4.1 Representation
Graph Construction. To apply our approach, the user first
creates a graph G = {V,E} to represent the input layout,
where V is the set of nodes representing the intersections,
entrances and points-of-interest (POIs), and E is the set of
edges representing the connecting paths between adjacent
nodes. The creation process is simple and is similar to
specifying a waypoint system in typical game level design.
The user places nodes at the intersections, entrances and
POIs of the layout. For example, in the illustrative example,
City, the POIs include the school, the post office and so forth.
The user also adds an edge between two adjacent nodes if
the places represented by the nodes are connected by a road.
Source-Destination Pairs. A source-destination pair en-
codes a navigation scenario to be considered by our ap-
proach, e.g., going from a bus stop to a restaurant, akin
to an input pair a wayfinding designer creates to specify a
navigation scenario in conventional wayfinding design [12].
Each pair zi = (si, di) consists of a source (starting point) si
and a destination di.

To facilitate the creation of source-destination pairs, by
default our approach automatically generates a source-
destination pair between every node representing an en-
trance and every node representing a POI, with the former
being the source and the latter being the destination. Addi-
tionally, the user can specify any extra pair if needed. For
instance, in the City example, he may want to create a pair
connecting the hotel and the restaurant.
Importance Values. We also allow the user to assign an
importance value κi ∈ [0, 1] to each source-destination pair.
For instance, in the City example, the (Hotel, Restaurant) pair
can be given a higher importance value if many pedestri-
ans are expected to walk from the Hotel to the Restaurant,
whereas the (School, Restaurant) pair can be given a lower
importance value if fewer pedestrians are expected to walk
from the School to the Restaurant. In the optimization, the
path connecting the Hotel with the Restaurant should be
given a higher priority, compared to the path connecting the
School to the Restaurant. If a trade-off exists, it is important
to make sure that pedestrians can walk conveniently from
the Hotel to the Restaurant, while it may not matter as much
for pedestrians to walk a somewhat inconvenient path from
the School to the Restaurant.

5 WAYFINDING SCHEME OPTIMIZATION
Given a source-destination pair zi = (si, di), there could
exist multiple possible paths from si to di. Let Pzi denote
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the set of all such paths. Our goal in this step is to generate
a wayfinding scheme that takes all source-destination pairs
{zi} into account and selects a path for each pair. In other
words, we select a path pi ∈ Pzi for each pair zi, such that
the set of all selected paths P = {pi} satisfies some local
and global criteria defined by our cost terms. We formulate
our problem as an optimization of a total cost function:

CP
all(P ) = wL

localC
L
local + wN

localC
N
local + wA

localC
A
local + (1)

wL
globalC

L
global + wN

globalC
N
global

The total cost function CP
all(P ) refers to a weighted sum

of cost terms encoding the length, number of decision points
and the amount of turns of each path, as well as the length
and number of decision points of the overall wayfinding
scheme. The user can adjust the importance of different
design criteria by changing the weights of the corresponding
cost terms, to accommodate the domain-specific needs of
the layout for which the wayfinding scheme is designed.
We describe each cost term in detail as follows.

5.1 Wayfinding Cost Terms
Local Path Length. In general, pedestrians prefer to walk
a short distance [12], [19], [58]. Hence, for each source-
destination pair, a shorter path is preferred. We define a cost
to penalize the length of the selected path of each source-
destination pair:

CL
local(P ) =

1

|P |LE

∑
p∈P

κpL(p), (2)

where |P |LE is the normalization factor with |P | being the
number of source-destination pairs and LE being the total
length of all edges in graph G. L(p) returns the length of
path p. κp ∈ [0, 1] is the importance value assigned to the
source-destination pair that path p belongs to.
Local Path Node. The nodes in our formulation correspond
to decision points in the wayfinding literature [12]. Decision
points are locations where pedestrians need to make a
decision about which direction to go, such as an intersection
between paths (e.g., a lobby in a subway station); or where
pedestrians need to confirm the identity of the current
location, such as a place of interest (e.g., a platform in a
subway station). Directional or identification signs need to
be placed at decision points to guide pedestrians to find
their directions [12], [14] or identify their current locations.
Paths with lots of decision points should be avoided [39]
as making each navigation decision induces stresses to the
pedestrians for the fear of making a wrong decision that
may lead to a wrong place [39], [59]. Therefore we define a
cost to penalize the number of decision points of each path:

CN
local(P ) =

1

|P ||V |
∑
p∈P

κpN(p), (3)

where |P ||V | is the normalization factor with |P | being the
number of source-destination pairs and |V | being the total
number of nodes in graph G. N(p) returns the total number
of nodes along path p.
Local Path Angle. Research in spatial orientation [43]
suggests that paths with varying orientation tend to confuse
pedestrians in wayfinding, causing disorientation, anxiety
and discomfort [2]. A wayfinding scheme composed of
straight paths is more intuitive for navigation [33]. We
therefore include a cost term to penalize the selection of
paths with varying orientation:

CA
local(P ) =

1

|P ||V |π
∑
p∈P

κpA(p), (4)

where |P ||V |π is the normalization factor with |P | being
the number of source-destination pairs and |V | being the
total number of nodes in graph G. The maximum absolute
turning angle between two adjacent edges is π. A(p) returns
the sum of absolute turning angles between all adjacent
edges along path p.
Global Path Length. Our approach encourages paths to
overlap with each other so as to minimize the total length
of roads (edges) that are part of a path. This property
could be useful from the management’s perspective [8], [12],
because by directing the flow of human movement to fewer
roads, fewer roads will need to be maintained, patrolled and
lightened up. We define a cost to encourage overlapping
paths accordingly:

CL
global(P ) =

L(P )

LE
, (5)

where LE is the total length of all edges in graph G as the
normalization factor. L(P ) returns the total length of the
edges that belong to any path in P .
Global Path Node. Our approach also encourages different
paths to share nodes. Similar designs can be observed in
the wayfinding schemes of different real-world premises,
such as subway stations, shopping malls and concert halls,
where people are directed to a lobby or an information desk
that can lead to multiple destinations (see Figure 1 for an
example). From the management’s perspective, it could be
easier to maintain signs centralized at certain locations in the
environment [10], [14]. Also, centralizing signs could save
space, which could be reserved for other better uses [58].
We define a cost to encourage node sharing accordingly:

CN
global(P ) =

N(P )

|V |
, (6)

where |V | is the total number of nodes in graph G as
the normalization factor. N(P ) returns the total number of
nodes that belong to any path in P .

5.2 Optimization
For each source-destination pair zi, there exist a lot of
possible paths going from the source to the destination. For
instance, pair (Bus Stop, School) in the illustrative example
(Figure 3) has more than 1, 000 possible paths. Given the
many combinations of possible paths of all pairs, the solu-
tion space could be huge as it grows exponentially with the
number of pairs being considered.

To reduce the search space for a solution, we devise
a sampling-based, stochastic search algorithm to solve the
optimization problem as follows. For each pair, we only
consider the first loopless k shortest paths, which can be
found by Yen’s algorithm [60] in O(|E|+ |V | log(|V |)) time
using a Fibonacci heap, where |E| is the number of edges
and |V | is the number of nodes. Deviation algorithms [61]
and alternative implementations [62] exist that could further
enhance computational efficiency, yet we adopt the classical
implementation for simplicity.

Given the k shortest paths for each source-destination
pair, we find a combination of paths of all source-destination
pairs which corresponds to a low cost value. Even though
we reduce the size of the solution space this way, an ex-
haustive search for the global optimum would still require
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(a) Initialization (b) Iteration 5,000 (c) Iteration 30,000 (d) Iteration 40,000 (result)

Fig. 4: Wayfinding schemes generated over the iterations of an optimization of the illustrative example, City. (a) Initialization. The source-
destination pairs include walking from the bus stop to each POI, and walking between every pair of POIs. The path of each pair is randomly
chosen from its k shortest paths. (b) Iteration 5,000. The selected paths start to overlap. (c) Iteration 30,000. The result is still sub-optimal. For
example, the path connecting the bus stop to the restaurant at the upper right still shows large turning angles. (d) Optimized result.

Fig. 5: Cost throughout the optimization of the City example.

heavy computation exponential to the number of pairs being
considered.

Instead, our approach finds a local optimum as an ap-
proximate solution. We apply the simulated annealing tech-
nique [63] with a Metropolis Hasting [64] state-searching
step to explore the complex optimization landscape. The
optimization proceeds iteratively. In each iteration, the cur-
rent solution P is altered by a proposed move to another
solution P ′, which may or may not be accepted depending
on the acceptance probability of the proposed solution.
More specifically, the acceptance probability is calculated by
the Metropolis criterion:

Pr(P ′|P ) = min(1, e
1
T (CP

all(P )−CP
all(P

′))), (7)

where T is the temperature of the annealing process. T
is high at the beginning of the optimization, allowing the
optimizer to explore the solution space more aggressively;
T is low towards the end of the optimization, allowing the
optimizer to refine the solution. Essentially, the optimizer
accepts any solution with a lower cost, while it accepts a
solution with a higher cost at a probability: the higher the
cost, the lower the acceptance probability. The optimization
terminates if the absolute change in cost is less than 1% over
1, 000 iterations.

Figure 4 shows the wayfinding schemes generated over
the iterations of the optimization process of the illustra-
tive example. Figure 5 shows the decay in cost over the
optimization process. We also experimented with changing
the importance values of the source-destination pairs; the
resulting wayfinding schemes are depicted in Figure 6.
Proposed Moves. Our proposed moves follow a simple de-
sign. Depending on the number of source-destination pairs
|P |, our optimizer changes the selected paths of up to |P |
source-destination pairs in a single move. The probability
Prx of drawing a move to change the selected paths of x

(a) (b)

Fig. 6: Experimenting with different importance values. (a) Wayfind-
ing scheme generated with all source-destination pairs having the same
importance value of 0.5. The path from the Bus Stop to the Restaurant
is shown in green. (b) Wayfinding scheme generated with the (Bus
Stop, Restaurant) pair having a lower importance value of 0.25. In this
case, the global path length is improved (i.e., the global path length is
shorter) while the local path angle of the path from the Bus Stop to the
Restaurant becomes worse (i.e., the path has more orientation changes).

pairs is inversely proportional to x, i.e., Prx = |P |−x+1
X ,

where X =
∑|P |

i=1 i. A selected path is randomly changed
to another path from the set of k shortest paths of its
corresponding source-destination pair.
Parameter Settings. In our experiments, we initialize P by
randomly selecting a path from one of the k shortest paths
for each source-destination pair. By default we adaptively
set k such that the length of the k-th shortest path is
just within 16% of the length of the first shortest path, as
research in spatial cognition finds that humans typically
choose a path with a length within 16% of that of the
shortest path [33]. Unless otherwise specified, each pair is
assigned the same importance value κi = 1

|P | , and we
empirically set the weights wL

local and wN
local to 1, wL

global and
wN

global to 5, and wA
local to 10. These parameters and weights

can be adjusted via the interface of our tool according to
domain-specific design needs—a flexibility provided by our
optimization-based design framework.

6 AGENT-BASED SIGN REFINEMENT
The wayfinding scheme optimization in the previous step
produces a wayfinding scheme which comprises paths from
the sources to the destinations. In this section, we discuss
how our approach automatically places signs for each path
to facilitate wayfinding.

6.1 Overview
Each node along a path corresponds to a decision point
where a sign may be placed [12]. In our experiment design,
a sign shows an arrow pointing to the next node and the
destination’s name or symbol. Two or more signs placed
at the same node are combined into a single sign showing
multiple pieces of wayfinding information. Figure 7 shows
an example sign placed at a street corner in the City scene.
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Fig. 7: Exam-
ple sign.

A trivial yet unrealistic solution is to place
a sign showing the direction to the destina-
tion at every node along a path, so that a
pedestrian walking along the path will keep
reassured that he is heading to his desti-
nation. However, this solution will involve
placing many redundant signs occupying a
lot of space, and is generally not adopted.

Instead, our approach places signs at
strategic locations according to human vision
and navigation properties which are evalu-
ated via agent-based simulations. The sign
placement process is performed as an op-
timization against a number of cost terms reflecting the
quality of the wayfinding experience brought about by the
signs. The optimization starts with the trivial solution of
placing a sign at each node along a path, then iteratively
alters the sign placement to optimize the costs.

One advantage of this approach compared to the alter-
native approach of iteratively adding signs from scratch
is that the optimization process of this approach is much
more tractable, because the initial solution and each inter-
mediate solution represent a feasible wayfinding solution
even though they may contain redundant signs and the
sign distribution may not be ideal. As we experienced in
our experiments, this approach allows the optimizer to
progress stably and conservatively to achieve a refined sign
placement solution effectively.

6.2 Representation
A sign placement solution refers to placing signs at certain
nodes of the input layout. Given the path of each source-
destination pair (computed from Section 5), a good sign
placement solution guides each pedestrian to walk from the
source to the destination through the path effectively. Note
that there could exist multiple reasonable sign placement
solutions. The goal of this step is to locate one of such
solutions through an optimization.

In case a road connecting two adjacent nodes is long,
we may want to place signs at some intermediate locations
along the road to reassure the pedestrian about his walk-
ing direction. Therefore, for roads longer than a distance
threshold dr, our approach adds extra nodes between the
two end nodes of the road in a pre-processing step, such
that the distance between any two adjacent nodes is shorter
than dr. These extra nodes serve as additional potential
locations for placing signs. dr can be empirically set by
the designer depending on how frequently a pedestrian
should be reassured about his direction. For example, for
a subway station, the designer can use a smaller dr such
that more signs will be generated along a long road to
reassure pedestrians that they are walking towards a desired
destination (e.g., a platform). For our illustration example,
City, we set dr to be 50 meter.

More specifically, given the graph G = {V,E} represent-
ing the input layout, we extend V to V ′ to include the extra
nodes added. A sign placement solution is represented by
S = {(vi, φi)}, where vi ∈ V ′ is the node at which sign φi
is placed. φi contains the sign’s attributes such as its arrow
direction and the name of the destination it is referring to.
Our optimization searches for a desirable sign placement
solution S∗ by minimizing a total cost function CS

all(S):

CS
all(S) = wN

signC
N
sign + wD

signC
D
sign + wF

signC
F
sign, (8)

where CN
sign and CD

sign are regularization costs; CF
sign is the

agent-based simulation cost for estimating the wayfinding

failure induced by the sign placement solution S. wN
sign,

wD
sign and wF

sign are the weights of the cost terms, which are
respectively set as 1, 1 and 10 by default.

6.3 Sign Placement Cost Terms
Number Of Signs. We include a cost term to regularize the
number of signs in the sign placement solution, to penalize
the existence of redundant signs:

CN
sign(S) =

N(S)

|V ′|
, (9)

where N(S) is the number of placed signs; |V ′| being the
total number of nodes (i.e., potential locations for placing
signs) is a normalization constant.
Distribution of Signs. In a real world design, signs are
often evenly distributed along a path, which serve the pur-
pose of regularly reassuring a pedestrian about his direction
towards the destination. Accordingly, we include a cost term
to regularize the distribution of signs:

CD
sign(S) =

1

|P |
∑
p∈P

σ(p)

L(p)
, (10)

where |P | is the number of source-destination pairs; σ(p)
is the standard deviation of the distances between any two
adjacency signs on path p, and L(p) is the length of path p.
Wayfinding Failure. The placed signs should effectively
guide the pedestrians from the sources to the destinations.
We include a cost term to penalize wayfinding failure:

CF
sign(S) =

{
F (S) if F (S) ≤ µ,
+∞ otherwise , (11)

where F (S) is the percentage of agents who fail to reach
their destinations under the current sign placement S. F (S)
is obtained by performing an agent-based simulation with
sign placement S. µ is a failure tolerance level specified by
the designer, which is set as 20% by default.

6.4 Agent-based Evaluation
In each iteration of the optimization, we employ an agent-
based simulation to evaluate the wayfinding experience
under the current sign placement S, to obtain F (S) used
for computing the wayfinding failure cost.
Agent Model. Each agent mimics a pedestrian walking
from a source to a destination. We model each agent with
wayfinding behavior according to Montello and Sas [65].
The agent starts from the source. It can see any unoccluded
sign within visible distance dv. Whenever it sees a sign
pointing to its destination, it will follow the sign to choose a
direction to walk. If it arrives at an intersection but is unsure
about which road to take out of several roads connected to
that intersection, it will randomly choose a road to walk
with equal probability. To more realistically model mistakes
that humans can make throughout a navigation, each agent
has a probability Prmiss of missing a sign even within sight.
Simulation. For each source-destination pair, 100 agents are
employed to walk from the source to the destination using
the agent model described. At the end of the simulation, we
count the number of agents that can successfully reach their
destinations, and hence compute F (S).

A “success” is defined as follows: let db be the “baseline”
walking distance from the source to the destination if no
mistake is made (i.e., Prmiss = 0) under full sign placement
(i.e., a sign is placed at every node along a path). If an
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(a) Initialization (b) Iteration 100 (c) Iteration 500 (d) Iteration 1,000 (result)

Fig. 8: Sign placement generated over the iterations of the optimization in the agent-based sign refinement step. (a) Initialization. Road signs
are placed at every intersection along the paths generated in the wayfinding scheme optimization step. (b) Iteration 100. Some redundant road
signs have been removed. (c) Iteration 500. Redundant road signs along the bottom path have been further removed. (d) Result. The signs on the
bottom path are combined into a single sign placed near the middle of the path. The redundant sign on the upper path has been removed.

agent, given the chances of making mistakes and under the
current sign placement S, can walk from the source to the
destination by a distance no longer than λdb, the navigation
is considered as a success. The navigation is counted as a
failure otherwise. We use λ = 1.5 in our experiments.

6.5 Sign Refinement by Optimization
Initialization. Our optimization is initialized with the full
sign placement solution, i.e., a sign is placed at every node
along the path from the source to the destination of each
source-destination pair. Although this sign placement can
lead the pedestrians to their destinations, it consists of
a lot of redundant signs that could be removed without
affecting the pedestrians’ ability to find their ways. We
apply a stochastic, agent-based optimization to search for
a reasonable sign placement solution.
Iterative Refinement. Our optimization proceeds itera-
tively. At each iteration, a move is randomly proposed to
alter the sign placement solution whose quality is evaluated
using the total cost function CS

all(S). The moves include:
• Adding 1 or 2 signs to 1 or 2 source-destination pairs.
• Removing 1 or 2 signs from 1 or 2 pairs.
• Moving a sign from one node to another node of a

source-destination pair.
The proposed solution is accepted with an acceptance

probability determined by the Metropolis criterion as de-
scribed by Equation 7, using CS

all(S) as the cost function.
The optimization terminates if the absolute change in cost is
less than 1% over 50 iterations.

Figure 8 shows the sign placement over iterations for the
illustrative example. In this example, the source-destination
pairs include walking from the Bus Stop to each POI, and
walking between every pair of POIs. Each iteration of the
optimization takes about 0.01 second to finish in our exper-
iments. It takes about 1, 000 iterations (about 10 seconds) to
finish the sign placement optimization for this example.

7 EXPERIMENTS AND RESULTS

We implemented our approach as a plugin for the Unity
5 game engine using C#, which level designers can use to
create a wayfinding scheme of a given layout. We run our
experiments using a Macintosh machine equipped with a
2.3 GHz Intel Core i7 processor and 8GB of RAM. Gen-
erating a wayfinding scheme for a layout similar to the
illustrative example, City, takes about 40 seconds using our
current implementation.

7.1 Different Layouts
We used our approach to generate wayfinding designs
for different layouts: Amusement Park, Downtown and Penn

Station. Figure 9 shows the maps from which the layouts are
extracted following the procedure in Section 4.1. Figure 10
shows the wayfinding designs generated by our approach.
We describe the details of each generation in the following.
Please also refer to the supplementary material for details
of the generated wayfinding schemes of the layouts, and
also for the results of two more layouts: City and Canyon,
which demonstrate how our approach could be applied to
generate wayfinding designs for 3D virtual environments
and with robustness as a key consideration.
Amusement Park. We use the layout of an amusement
park, Six Flags New England, as input (see Figure 10). The
POIs, which in this case are the Entrance, Sky Screamer,
Bonsai, Batman and Picnic Grove, represent the popular
spots the visitors would like to visit. The source-destination
pairs involve all pairs of entrances and popular spots, and
all pairs of popular spots. In addition to the popular spots,
we expect there are street performances and stalls in the
park, which might distract visitors from navigating to their
destinations. To model such distractions, we set the missing
chance Prmiss in the agent simulation of the sign placement
optimization step to a relatively high level of 0.2. Besides,
we assume that visitors highly prefer to walk shorter and
more direct paths to their destinations if possible, therefore
we use larger values of 5 for the weights wL

local and wN
local of

the local path length and local path node costs.
Figure 10 shows the generated design. Our approach

generates a path for each source-destination pair. It places
road signs densely at each intersection along the paths to
ensure the robustness of the wayfinding system. The left-
hand side of the layout shows a shortcut generated which is
part of the paths from the popular spot at the lower left to
the popular spots on the right. The shortcut allows visitors
to walk shorter paths to their destinations, and is also more
direct for the visitors as it passes through fewer intersections
(2 instead of 3) compared to the alternative path above.
Downtown. This example uses the layout of Downtown
Boston as input. The goal is to place road signs that guide
drivers to an available parking lot nearby. The entrances
refer to the major roads through which most cars enter the
Downtown area. The POIs are the parking lots, which are
placed at the same locations as the real parking lots found
on Google map. We suppose that all the parking lots are run
by the same company, hence there are signs showing the
way from one parking lot to a nearby parking lot within 0.2
mile, such that if a parking lot is full the driver can follow
the signs to a nearby parking lot. Accordingly, we define
the source-destination pairs to connect each entrance to its
nearest parking lot, as well as to connect each parking lot
to its nearby parking lot. The latter type of pairs are given
a relatively larger importance value (κp = 0.8 instead of
0.5 given to other pairs), so that our system will prefer to
find shorter paths passing through fewer intersections for
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Amusement Park Downtown Penn Station

Fig. 9: Maps and 3D models from which the layouts are extracted.
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Fig. 10: Wayfinding designs generated for Amusement Park, Downtown and Penn Station.
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(a) Default Parameters (b) High Miss Chance (c) Low Wayfinding Failure Weight (d) High Visibility

Fig. 11: Effects of changing the parameters of the agent-based sign placement step. (a) Default parameters. Roads that belong to a path of the
wayfinding scheme are shown in yellow. (b) High miss chance. The blue lines indicate the roads that the pedestrians have walked but do not
belong to any path. The generated wayfinding design is more robust against navigation mistakes. Signs are placed densely, and are also placed on
some roads not belonging to any path to guide the pedestrians back to the correct paths in case they get lost. (c) Low wayfinding failure weight.
Fewer signs are placed as wayfinding failure is more tolerable. (d) High visibility. Fewer signs are placed as the pedestrians can see signs far away.

the paths that connect one parking lot to a nearby parking
lot, to help drivers to get to an alternative parking lot more
easily in case a parking lot is full.

Figure 10 shows the generated design. A path is gen-
erated to connect each entrance to its nearest parking lot.
Short and direct paths are also generated to connect parking
lots to nearby parking lots. While there are many possible
paths that can be chosen as the layout comprises a network
of many streets, our approach chooses paths which are
straight and consists of few turns, as the local path node
cost penalizes the inclusion of intersections and the local
path angle cost discourages orientation changes.
Penn Station. This example uses the lower level of the Penn
Station as input. In this example, the entrances refer to the
gates and the stairs from the upper level. The POIs refer
to the terminals. The source-destination pairs include every
pair of entrance and terminal, and every pair of terminals
(for modeling the situations where a passenger wants to
transfer from one terminal to another terminal). As the
station is expected to be crowded, the visibility dv of the
agents is set to a relatively low value of 10 meters to account
for the occlusion by human crowd, and the miss chance
Prmiss is set to a relatively high level of 0.2. Figure 10 shows
the generated wayfinding design. The road signs are placed
densely and are also placed at non-intersection nodes, to
counteract the higher miss chance by reassuring pedestrians
about their directions.

7.2 Changing Agent Parameters
We further experimented with changing the parameters
of the agent-based sign placement process using the City
layout. In the default settings, the missing chance Prmiss is
set to 0%, the weight wF

sign of the wayfinding failure cost
term is set to 10 and the visibility distance dd is set to
125 meters. Figure 11(a) shows the resulting sign placement
generated with the default parameters.

We experimented with increasing the missing chance
Prmiss to 10%. Figure 11(b) shows the resulting sign place-
ment. Our system places more signs so as to increase the
robustness of the wayfinding design against navigation
mistakes. In addition, some signs are placed on the roads
not belonging to any path for guiding the agents back to the
correct paths.

Next, we experimented with lowering the weight of the
wayfinding failure cost term to 0.01. Figure 11(c) shows the
resulting sign placement. Our system keeps fewer signs,
because it is acceptable even if some agents make mistakes
and do not walk to the destination within a desired period
of walking. The pedestrians walk along some roads (shown

in blue) not belonging to any path. This setting maybe useful
for some situation where it is not critical for the agents to
reach the destination, and when space is better preserved
for other uses. For example, in a flea market, it may not
be critical for the pedestrians to visit each stall as they are
expected to wander around in the market.

Finally, we experimented with increasing the visibility to
250 meters. Figure 11(d) shows the result. Our system keeps
only a fewer signs because the pedestrians are capable of
seeing signs at a farther distance. This setting is useful for
modeling situations where the signs are big (such as those
shown in billboards) and can be seen far away.

7.3 Visualization
Destination Accessibility. Our approach also allows the
designer to visualize the accessibility of a destination under
the generated wayfinding design. This is a very useful func-
tionality that can help the designer to create a wayfinding
design that guides pedestrians from different locations to
walk to a destination as desired. Figure 12(a) depicts this
functionality. The accessibility of a destination (the Post
Office) is visualized as a heatmap. Agents in the blue region
can travel to the Post Office successfully by following the
wayfinding signs under the current wayfinding design;
while those in the red region have a low chance of success.

To compute the accessibility heatmap with respect to a
destination specified by the designer, our system sample
points at regular intervals along all the edges of the input
layout (whether the edges are part of the paths of the
generated wayfinding design or not). Agents are employed
to walk from each sample point to the destination, in a
similar fashion as in the agent-based sign placement step
(Section 6), to compute the rate of success of reaching
the specified destination from each of the sample points.
The rates of success are used to set the heatmap colors at
the corresponding sample points; the heatmap color values
between two sample points are interpolated.

Note that a destination typically does not need to be
accessible from every region, because enforcing such full
accessibility will likely involve placing a lot of signs even
at some “unimportant” regions. For example, it may not
be important to place signs to guide pedestrians how to
walk from a post office to a restaurant. By visualizing the
accessibility to a destination using a heatmap, the designer
can intuitively tell what regions are covered by the current
wayfinding design and if any improvement is needed.
Removing Blind Zones. If the designer wants to remove
a “blind zone” (i.e., a region shown in red indicating low
accessibility to the destination), he can easily do so by
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(a) Accessibility of Post Office (b) Remove Blind Zone (at C)

Fig. 12: (a) Accessibility of the Post Office visualized as a heatmap.
The accessibility from location A is good as depicted by the blue color,
because a pedestrian can easily see and follow a sign on the west
to walk to the Post Office. The accessibility from location B is fair as
depicted by the green color. A pedestrian starting at B has a 50%

chance to walk to the street towards the north or the east and get lost.
The accessibility from location C is poor as depicted by the red color.
Without any sign nearby, a pedestrian starting at C has a very low
chance to reach the Post Office. (b) Removing the blind zone at C. The
user triggers our system to place a road sign at C showing the direction
to the Post Office. The accessibility around C is improved, as depicted
by the change in color from red to blue on the updated heatmap.

clicking on the red region via our user interface. Our system
will automatically place signs which guide pedestrians to
walk from the clicked point to the path leading to the
destination. This is achieved by re-running the wayfinding
scheme optimization and the agent-based sign refinement
steps taking the existing solution as the initialization. Note
that these additional optimization steps only change the
paths and signs related to the newly-added POI; the loca-
tions of the signs and paths in the existing solution are fixed.
After the optimization steps, agent-based evaluations will
be re-run at each sample point to update the heatmap ac-
cordingly, which takes about 1 second for the City example.
Figure 12(b) shows an example of removing a blind zone.

8 EVALUATION

8.1 User Study
Conditions. We conducted a user study to evaluate the
effectiveness of the wayfinding designs generated by our
approach. Our user study was conducted in the City layout
used as the illustrative example. Participants were asked
to navigate from a starting point to a destination under 4
different wayfinding conditions:

1) No sign.
2) Mini-map. A mini-map that functions like a mini-map

in a common first-person 3D video game is shown;
3) Full signs. In this case, we only run the wayfinding

scheme optimization step to generate the paths for the
source-destination pairs. Signs are placed at every node
along each path.

4) Refined signs. In this case, we run the wayfinding
scheme optimization step to generate the paths, and
then the agent-based sign refinement step to refine the
sign placement. Signs are placed strategically at some
of the nodes along each path.

Figure 13 shows two screenshots of the user study tests
under the mini-map and refined sign conditions. There are
2 different scenarios. In the first scenario, the participant
was asked to walk from the Bus Stop to the Restaurant.
In the second scenario, the participant was asked to walk

(a) Mini-map (b) Refined signs

Fig. 13: Screenshots of the user study tests under the (a) mini-map and
(b) refined signs conditions.

from the Bus Stop to the School. Each scenario was tested by
80 participants under the 4 different wayfinding conditions
(i.e., 20 participants for each condition).
Participants. In total, we recruited 160 participants through
social networks. The participants are university students.
All of them have experience with 3D video games and are
familiar with the movement control of common first-person-
shooting games, which our user study program similarly
adopts. Before each test, a description of the task and the
movement control is shown to the participant, and the
participant is allowed to get familiar with the movement
control in a warm-up session.
Test Sessions. The goal of the participant in each test is
to walk to the destination (School or Restaurant) as fast as
he can. To make sure he is clear about the destination, a
screenshot of the destination is also shown to the participant
before the user study begins. Our program records the path,
the distance walked and the time taken by the participant.
The test ends if the participant reaches the destination, or if
the time taken exceeds the time limit, which is defined as
three times the time needed to walk from the start to the
destination without any stop following the path generated
by the wayfinding scheme optimization step. The latter is
considered as a failure case.

8.2 Results and Analysis
Path Taken. Figure 14 shows the results of the user study.
The paths taken by the participants are visualized in a
heatmap. The roads with high usage are shown in red, and
those with low usage are shown in blue. There are some
interesting observations. Under the no sign condition, the
participants wandered around and could barely reach the
destination. Under the mini-map condition, the participants
walked towards their destinations along similar directions.
However, there are considerable variations among the paths
taken, as can be seen from the color dispersion on the
heatmaps. For example, in scenario 2, near half of the
participants took the bottom path while the other half took
the upper path. Under the full signs and refined signs con-
ditions, all participants walked to the destinations following
the same path.
Distance Walked. Table 1 shows the statistics of the dis-
tances walked by the participant under different conditions.
For the no sign condition, only the data of the participants
who could reach their destinations within the time limit is
used to calculate the statistics. For the other conditions, all
participants can reach the destinations and all data is used
to calculate the statistics.

Under the no sign condition, only 55% and 25% of the
participants could reach their destinations in Scenario 1 and
2 respectively. For those who could reach the destinations,
they generally needed to walk a very long way as shown by
the large mean values.

Under the mini-map condition, all participants could
reach their destinations. In Scenario 1, the participants
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(a) No sign (b) Mini-map (c) Full signs (d) Refined signs
Scenario 1 (Bus Stop to Restaurant)

(a) No sign (b) Mini-map (c) Full signs (d) Refined signs
Scenario 2 (Bus Stop to School)

Fig. 14: Paths taken by the participants of the user study under different wayfinding conditions. Usage of each road is shown by its color (roads
which are not walked are shown in gray). (a) With no sign, participants wandered randomly and could hardly reach the destination. (b) With a
mini-map, participants walked along a similar direction towards their destinations, but the paths they took varied. (c,d) With full signs or refined
signs, all participants followed the same paths to walk to their destinations. The refined sign placement is as effective as the full sign placement,
but uses a significantly smaller number of signs.

Condition Dist.(m) SD(m) Time(s) Success #Signs
No sign 1,128.28 361.22 54.19 55.00% -
Mini-map 515.54 35.81 34.05 100.00% -
Full signs 514.21 11.45 30.72 100.00% 8
Refined signs 517.83 11.95 27.59 100.00% 3

(a) Scenario 1 (Bus Stop to Restaurant)
Condition Dist.(m) SD(m) Time(s) Success #Signs
No sign 1,205.67 187.51 53.43 25.00% -
Mini-map 503.32 55.27 31.18 100.00% -
Full signs 471.37 6.11 29.09 100.00% 7
Refined signs 476.32 7.38 25.25 100.00% 3

(b) Scenario 2 (Bus Stop to School)

TABLE 1: Average distances walked and average time taken by
participants under different wayfinding conditions. For the no sign
condition, only the data of the participants who successfully reached
their destinations are used to compute the statistics. In general, it took
the least amount of time for participants to reach their destinations
under the “refined signs” condition. Compared to the “full signs”
condition, users under the “refined signs” condition probably needed
to spend less time looking for and reading signs. Compared to the
“Mini-map” condition, users under the “refined signs” condition could
probably determine the correct direction more intuitively and quickly.

could reach the destination Restaurant by walking a distance
similar to that in other conditions. However, the standard
deviation (35.81m) is higher than the standard deviations
(11.45m and 11.95m) of the other conditions, showing that
there are larger variations in performances, due to differ-
ent paths chosen as shown in Figure 14. In Scenario 2,
the relative difference in standard deviation is even more
pronounced (55.27m under the mini-map condition, versus
6.11m and 7.38m under the other conditions), due to the
larger differences in walking distances of the paths chosen.
In average, the participants walked a shorter distance to
reach the destination under the full signs or refined signs
conditions (471.37m and 476.32m) than under the mini-map
condition (503.32m).

Under the full signs and refined signs conditions, all
participants can reach their destinations. The means and
standard deviations of the walked distances are similar.
This shows that the refined sign placement is as effective
as the full sign placement in guiding the participants to
their destinations. However the refined sign placement uses
significantly fewer signs (3 signs under refined sign place-

ment versus 8 signs under full sign placement in Scenario
1; and 3 signs under refined sign placement versus 7 signs
under full sign placement in Scenario 2). Please refer to our
supplemental material for the user study results and a video
showing example sessions.

9 SUMMARY
We verify in our experiments that our approach can be
applied to automatically generate wayfinding designs for
a variety of layouts, and that the designs can be used by
human users to navigate to their destinations effectively
in virtual worlds. Compared to the conventional approach
of creating wayfinding designs manually, the novelty of
our approach lies in formulating the problem as an op-
timization, which can be solved automatically and effi-
ciently, hence overcoming the design challenge posed by
the considerations of multiple paths and design criteria. Our
optimization approach also allows the flexibility of consid-
ering additional constraints in wayfinding design and the
designer can trade off between different criteria by control-
ling their corresponding weights. We adopt an agent-based
approach to automatically place signs at strategic locations,
considering human perception and navigation properties
such as eyesight and the possibilities of making mistakes.
The agent model makes it intuitive and flexible for designers
to define agent properties and behaviors according to the
specific requirements of their design projects on hand; signs
will be automatically placed according to the specified agent
properties.

9.1 Limitations and Future Work
Our approach only focuses on placing textual and arrow
signs to facilitate wayfinding. While these are common
wayfinding aids, in reality humans also make use of other
wayfinding aids and cues such as maps (e.g., “You-are-here”
maps [10], [12]), landmarks and flow of people movement to
determine directions. In future extension it would be useful
to consider all these alternative aids and cues in generating
a wayfinding design.

Our agent-based simulation model only focuses on a few
properties that are relevant to wayfinding. More realistic
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virtual humans comprising of cognitive, perceptive, behav-
ioral and kinematic modules, similar to the autonomous
agents used for artificial life simulation [45], could be
used to replace our agents. The perceptual data obtained
from the simulations based on such agents could be used
for more sophisticated wayfinding analysis to enhance the
computationally-generated wayfinding design.

In our current approach, for simplicity we only consider
one path for each source-destination pair. In fact, there could
exist multiple paths (secondary paths) for each pair. This can
be modeled by extending our framework to allow multiple
paths for each pair, which will be considered jointly in the
optimization.

In our approach, the source-destination pairs are manu-
ally specified rather than automatically generated. This is
because our approach does not infer the layout context.
An interesting future direction is to devise a data-driven
approach to automatically identify the possible locations
of interests given a layout based on prior statistics of hu-
man flows, and hence automatically suggest the source-
destination pairs to consider. For example, given a subway
station, a data-driven approach may automatically suggest
that (Entrance, Ticket Machine) and (Ticket Machine, Gate)
as likely source-destination pairs, based on the real-world
statistics of human flows in subway stations.
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on configuration-space costmaps,” IEEE Transactions on Robotics,
vol. 26, no. 4, pp. 635–646, 2010.

[31] N. J. Nilsson, Principles of artificial intelligence. Morgan Kaufmann,
2014.

[32] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin, “Procedural
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