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Abstract— Navigation in pedestrian environments is critical
to enabling independent mobility for the blind and visually
impaired (BVI) in their daily lives. White canes have been
commonly used to obtain contact feedback for following walls,
curbs, or man-made trails, whereas guide dogs can assist in
avoiding physical contact with obstacles or other pedestrians.
However, the infrastructures of tactile trails or guide dogs are
expensive to maintain. Inspired by the autonomous lane follow-
ing of self-driving cars, we wished to combine the capabilities
of existing navigation solutions for BVI users. We proposed
an autonomous, trail-following robotic guide dog that would
be robust to variances of background textures, illuminations,
and interclass trail variations. A deep convolutional neural
network (CNN) is trained from both the virtual and real-
world environments. Our work included major contributions:
1) conducting experiments to verify that the performance of
our models trained in virtual worlds was comparable to that
of models trained in the real world; 2) conducting user studies
with 10 blind users to verify that the proposed robotic guide
dog could effectively assist them in reliably following man-made
trails.

I. INTRODUCTION

We wish to enable independent navigation for people who
are blind or visually impaired (BVI). We proposed a solution
in the form of a robotic guide dog with physical human-robot
interaction to extend the capability and reliability of a white
cane. The robotic guide dog could travel indoors or outdoors
on various terrains of general pedestrian environments and
used a vision-based learning approach to autonomously follow
man-made trails.

A. Navigation Aids for the Blind and Visually Impaired
There is a great need to develop navigation aids, given that

there are 286 million BVI people in the world, according to
the World Health Organization [1]. In the last two decades,
assistive technologies have been developed, including those
with functionalities of navigation, localization, and obstacle
avoidance using several types of non-visual feedback, such
as voice and vibration [2]. To date the most commonly used
navigation aid for BVI people is a white cane, given its low-
cost and reliability [3]. Recently, Wang et al. [4] developed a
system that works along with a white cane. It uses an RGB-D
camera, embedded computer, and haptic device to provide
feedback to avoid contact with other pedestrians walking
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Fig. 1: We proposed a trail-following guide dog robot powered
by a deep convolutional neural network (CNN). The network
was trained in both the real and virtual worlds to estimate the
robot states and generate robot motions. The robot guide dog
was shown to assist 10 blind users complete trail-following
tasks.

through a crowded environment or detect a target object such
as an empty chair. We refer the readers to the reviews of Wang
et al. [4] for other wearable solutions for safe navigation.

A guide dog is another navigation aid that assists BVI
users navigate without contacting other pedestrians; they also
provide companionship for the users. Nevertheless, according
to the International Guide Dog Federation (IGDF) [5], guide
dogs are still not available for most BVI users who need the
service in many regions due to the high cost of service animal
training and the pairing of dogs and users. Furthermore, some
environments are not service animal friendly.

There have been numerous efforts to develop navigation
robots that assist blind people. Different forms of robots are
capable of executing distinct tasks in various environments.
Kulyukin et al. [6] designed a wheeled robot using a laser
range finder and radio-frequency identification (RFID) sensors
to navigate around indoor environments with pre-installed
RFID tags. Gharpure and Kulyukin [7] proposed a shopping
robot for blind people, which guides the user in a store and
informs them of the prices of commodities. However, it only
operates indoors. For outdoor robots, Rasmussen et al. [8] used
stereo camera with a tilting range finder as an input sensor.
From the input data, the robot is capable of navigating along
outdoor trails intended for hikers and bikers. Another form
of robot was proposed by Ulrich and Borenstein [9]. Called
”GuideCane”, it is a robot combined with a white cane. When
the GuideCane’s ultrasonic sensors detect an obstacle, the



embedded computer determines a suitable direction of motion,
which steers the GuideCane (and user) around it. Therefore,
it does not require any training of the user. However, the
weight of the robot might be too heavy for everyday use.

B. Autonomous Trail/Lane Following
One challenge for blind people is to follow a trail/lane

in a specific environment. A variety of methods have been
proposed for a range of scenarios. Rasmussen et al. [8],
[10] used tilting LiDAR and omnidirectional camera data
to navigate along outdoor trails intended for hikers and
bikers. Using image processing techniques for appearance
and structural cues, the system achieved good accuracy and
robustness for trail-following over challenging scenarios with
varying tread textures, border vegetation, illumination, and
weather conditions. Siagian et al. [11] proposed a vision-based
mobile robot navigation system that is capable of navigating
along a road by detecting a set of lines extrapolated from
the contour segments. The heading and lateral position of
the robot are maintained by centering the vanishing point in
its field of view. It was tested to work even in busy college
campus environments, including challenges of occlusion by
pedestrians and obstacles, non-standard road markings and
shapes, and shadows. In a survey of lane/road detection by
Hillel et al. [12], the relevant approaches and algorithmic
techniques are categorized into functional building blocks,
including image cleaning, feature extraction, model fitting,
time integration, and image-to-world correspondence. [13]–
[15] develop autonomously traverse within a lane using low-
level features processing pipeline of line detection, ground
projection, lane filtering, lane control, and finite state machine
(FSM).

Recently, deep Convolutional Neural Networks (CNN) have
been used to achieve autonomous trail or lane following.
Giusti et al. [16] tackled autonomous forest or mountain
trail-following using a single monocular camera mounted on
a mobile robot, such as a micro-aerial vehicle. Unlike the
previous literature, they focused on trail segmentation and used
low-level features to develop a supervised learning approach
using a deep CNN classifier. The trained CNN classifier was
shown to follow unseen trails using a quadrotor. Deep driv-
ing [17] categorizes the autonomous driving work into three
paradigms. Behavior Reflex is known as a low-level approach
for constructing a direct mapping from the image/sensory
inputs to produce a steering motion. This is done by means
of a deep CNN trained by labels generated from human
driving along a road or in virtual environments. Mediated
perception is the recognition of driving-relevant objects, e.g.,
lanes, traffic signs, traffic lights, cars, or pedestrians. The
recognition results are then combined into a consistent world
representation of the cars and immediate surroundings. Direct
perception falls between mediated perception and behavior
reflex. It proposes to learn a mapping from an image to
estimate several meaningful states of the road situation, such
as the angle of the car relative to the road and the lateral
distance to lane markings. With the state estimation, other
filters or FSMs and controllers can be applied. The forest-trail-
following vehicle in [16] belongs to behavior reflex, whereas
the Duckietown falls into the direct perception paradigm.

Fig. 2: Man-made trails in pedestrian environments. From
left to right: 1) a real-world indoor environment in a hospital
in Taiwan; 2) guiding trail in a school for the blind in Italy;
and 3) the Freedom Trail in Boston, USA.

Fig. 3: Trail variations. Top: man-made yellow-blue trails
applied to ground with different textures; Bottom: there are
more than 20 trail textures on the Boston Freedom Trail,
resulting in a challenging interclass variation problem.

C. Challenges

The current trail-following solution for BVI users is to
use a white cane to detect and follow tactile trails on the
ground. However, building and maintaining such tactile trail
infrastructures is expensive and may cause inconvenience to
other pedestrians or wheelchair users. Man-made trails (as
shown in Fig. 3) that are detected by vision-based algorithms
could provide low-cost as an alternative to white canes
and tactile trails. Nevertheless, there are still challenges to
overcome, as in the previous works. Camera observations
may vary when man-made trails are deployed on various
background textures under different illuminations or shadows.
Interclass variations, such as the textures of the Freedom
Trail, also make it a challenging problem for feature-based
approaches or RANSAC to solve. Recent deep learning
approaches have been successful in lane/trail-following, such
as the scenarios in a highway autopilot or in an unstructured
forest. But to our knowledge, pedestrian environments have
not been well studied yet. Therefore, a robust learning-based
approach that enables trail-following is needed. We will
bypass the direct perception paradigm of detecting features
or object in the scene, and carry out both behavior reflex
(mapping an image to a robot action) and mediated perception
(mapping an image to a robot state, such as heading and lateral
distance to the trail).



Fig. 4: The cane-like rods and hand grasp. Left: Similar to
using a white cane, the forehand gesture allows the user to
explore his surrounding environment with the rod extended.
Right: The user holds the rod upright in a crowded scenario.

D. Contributions

We summarize our contributions as follows:
1) A robotic guide dog that extends the reliability of

a white cane and is able to autonomously follow
various man-made trails for BVI people in pedestrian
environments.

2) Deep trail-following models trained using data from
real-world and virtual environments, which are robust
to various background textures, illumination variances,
and interclass variations.

3) A user study with 10 BVI users, who were able to
complete trail-following tasks.

II. THE PROPOSED SYSTEM

A. Robotic Guide Dog Design Considerations

Because of its reliability, the white cane is the most
commonly used mobility aid in the BVI community; therefore,
we wished to maintain its reliability and extend its capability.
There have been many wearable solutions, including our
previous work [4]. A wearable device has advantages, such as
small size and light weight, but its computation capability and
battery life are highly limited. A robotic guide dog can carry
a heavier computation device and batteries. More importantly,
a robotic guide dog provides reliable physical human-robot
interaction, so we designed the cane-like rod and hand grasps
shown in Fig. 4. The design was inspired by the use of a white
cane, where a user either reaches farther away for exploration
or holds the rod upright in a crowded environment.

We wish to learn the mapping between an image of center
camera obtained from the robot’s heading and lateral distance
of the trail and its desired motion during prediction. The
settings of 3 cameras make it easier to collect 3 observations
of headings at the same time for training. For example,
the images collected from the left camera, representing the
observations of 30 degrees left of the robot heading during
prediction, are labelled ”Turn Right.” We collect data with the
robotic guide dog, train it offline with a workstation equipped

Fig. 5: The proposed robotic guide dog. There are three
cameras, three Raspberry Pi2s, and one Jetson TX1 embedded
computer onboard. During data collection, all three cameras
are used, whereas only one camera input is used while
performing prediction/inference.

NVidia GTX 1080 GPU, and then load the trained network
onto the embedded system for prediction.

The proposed robotic guide dog is shown in Fig. 5. Its
components include three Raspberry Pi fisheye cameras; each
camera is connected to a Raspberry Pi 2 Model B embedded
computer through its Camera Serial Interface (CSI) port.
The three cameras installed on the robotic guide dog with
headings of −30, 0, and 30 degrees are used for training
data collection. One of the three Raspberry Pi2s is connected
to DC motors with pulse width modulation control using
Duckietown software, whereas the other two are responsible
for ROS data logging only. We use an NVIDIA Jetson
TX1 embedded system with 4 GB of GPU/CPU memory
for onboard prediction. The dimensions of the robot are
34 cm×30 cm×18 cm (length, width, and height); it weights
about four kilograms, including batteries. The wheels of the
robot are designed to drive on indoor or outdoor terrains.
Complete with high-torque motors, it is designed to support
the handle tension between the robot and user.

B. Behavior Reflex for Motion Primitives

The system workflow is shown in Fig. 6. The deep CNN
model of behavior reflex directly maps the input image into
three output classes as motion primitives: “Turn Left”, “Go
Straight”, and “Turn Right”. To keep the robotic guide dog
following the trail, the left camera is labeled as “Turn Right”,
the middle camera as “Go Straight”, and the right camera
as “Turn Left.” A sigmoid function with a gain of 9 was
used in Eq. 1 to map the prediction probability of the deep
CNN model to the trim of the angular velocity of the robotic
guide. Only the “Turn Left” prediction probability Ptl and
“Turn Right” prediction probability Ptr were considered in
calculating the trim of the angular velocity using Eq. 2. With
the trim from Eq. 2 and a fixed linear velocity of 0.38, we
applied the inverse kinematics method in [13]–[15] to obtain
the motor rates for the robotic guide dog. Those settings in
Eq. 1 have been found to work empirically.

T (x) =
9

1 + e�x
(1)



Fig. 6: The proposed system workflow. We trained the deep CNN models in two ways: 1) the “behavior reflex” maps the
three prediction probabilities to turn left, go straight, and turn right motions, and 2) the “direct perception” trains a model
with seven output classes corresponding to various robot states of lateral distance d and heading φ. The states are then voted
into a lane filter [15] and lane controller to align with the trail.

trim = 1.2(T (Ptl)− T (Ptr)) (2)

C. Direct Perception for State Estimation

In direct perception, we wished to estimate the robot state
using the lateral distance d and heading φ directly from a
camera input. Again, we took advantage of the three cameras
of the robotic guide dog and collected images as it followed
the trails using three lateral distances −d, 0, and d. With the
−d lateral distance, the input images from the middle and
right cameras were labeled as “L S” and “L R” respectively,
as shown at the bottom left of Fig. 8. For the 0-lateral-distance
scenarios, as shown in the bottom middle of Fig. 8, the input
camera images from the left to right cameras were marked as
“C L”, “C S”, and “C R” respectively. With d lateral distance,
the images from left camera were labeled as “L R” and those
of middle camera are labeled “L S,” as shown in the bottom
right of Fig. 8. The images from the left camera with −d
distance and the right camera with d distance were ignored.
Such settings resulted in seven output classes in the deep
CNN model of direction perception. We utilized prediction
probability of the seven output classes to generate votes on
the measured likelihood of lateral distance and heading angle
based on the lane filter in [13]–[15]. The measured likelihood
resulted in estimates of lateral distance and heading angle for
the next controller stage by considering the current votes and
last controlling motion using a nonparametric Bayes filter.
The controller stage based on the lane controller in [13]–[15]
converted the estimates of lateral distance and heading angle
to a linear velocity and angular velocity trim for the robot.

III. DEEP TRAIL-FOLLOWING NETWORKS

A. Real-World Training Datasets

We designed two types of man-made trails: the yellow-blue
trail (YB) and the Freedom Trail (FT). The YB trails are

Fig. 7: Data collection in real world. We prepared two types
of trails (yellow-blue trail and the Freedom Trail) by printing
them on A4-sized pages and then attached them together in
one- or two-meter lengths. We then stitched them together and
placed them in natural environments. Top two rows: camera
inputs of the yellow-blue trail. Bottom-right: camera inputs
of the Freedom Trail.

reusable yellow and blue tapes, around 9.6 cm in width. The
FT trails were made by printing the textures of the Boston
Freedom Trail on A4-sized pages around 21 cm in width.
The real-world training datasets were collected by manually
operating the robotic guide dog following the YB and FT
trails with various backgrounds and illumination conditions,
in both indoor and outdoor environments, as shown in Fig. 7.
With additional data augmentation by flipping the collected
dataset, the real-world training dataset of the YB trail for
behavior reflex and direct perception contained 18,000 and
42,000 images respectively.

B. Virtual-World Training Datasets
Deep learning has rapidly developed to address a variety

of problems, but such an approach has relied upon massive



Fig. 8: Data collection in the virtual world. We rendered
camera inputs from a virtual world including a background
texture with some regions covered by light and shadow. Nine
virtual cameras were placed at lateral distances −d, 0, and
d and headings −30, 0, and 30 degrees, with two outward
cameras not used, resulting in seven classes of training data.

amounts of human-annotated training data, which became a
bottleneck for adapting to new applications. References [17]
and [18] used synthetically rendered datasets and showed
improved results. We wished to obtain the training data for
trail-following in a wide range of appearances and back-
grounds. As shown in Fig. 8, we set up seven virtual cameras
and followed a YB trail under different light conditions and
shadows. The images of the seven virtual cameras: L S, L R,
C L, C S, C R, R L, and R S are shown in Fig. 8.

To simulate real-world scenarios in virtual environments, we
employed background textures similar to those that occur in
natural scenes, such as brick and wood. Illumination variances,
spotlighting, and shadows generated by objects in the air
resulted in different illuminations on the trails, as shown in
the rightmost column of Fig. 8. To navigate automatically in
virtual environments, we set waypoints along the trail so that
the motions of the cameras could be estimated depending on
the current position and next waypoint. The input images of
the cameras were transferred as Robot Operating System
(ROS) compressed image messages to crop the training
samples. We also augmented the training data by flipping the
collected dataset, the virtual-world training dataset of the YB
trail for behavior reflex and direct perception contained 9,600
and 11,200 images, respectively.

C. Deep CNN Model Architectures

We used two model structures to perform deep trail-
following for the BVI: CaffeNet [19] and TrailNet [16].
CaffeNet consists of four convolution layers, four max-pooling
layers and three fully connected layers; the input channel is
3 × 227 × 227, and the size of the Caffe [20] platform is
about 220 MB. TrailNet is a relatively small network with five
convolution layers, three max-pooling layers, and three fully
connected layers. The gray-level input channel is 1×101×101,
and the size of TrailNet is 845 KB, which is significantly

Fig. 9: Top: We test the trained models on the proposed robotic
guide dog in one YB trail and one FT trail. Bottom: The
LED lights are designed to indicate the deep CNN prediction
results and estimate onboard computation latency.

smaller than CaffeNet. We also tested the RGB inputs for
the TrailNet input channel 3× 101× 101 as TrailNet-Color
to execute the recognition task.

IV. MODEL EVALUATIONS

A. Model Deployment in the Robotic Guide Dog

We deployed the trained models from both the real and
virtual environments for onboard prediction on the proposed
robotic guide dogs. The confusion matrix of the validation
showed a high accuracy of classification (all greater than
0.97). The proposed robotic guide dogs were then tested in
an environment with one loop of YB and the other of FT
trails, as shown in Fig. 9. Each loop was around 10 meters
long including 6 turns. We carried out testings of 5 trials,
each required the robots to stay on the trails for 20 loops.
There are 5 trails on YB and 5 trails on FT lines, and all
trials were completed. We also inspected the LED lights on
the robots, which indicated the onboard computation latency.
Our system run at 6 frames per second, and we found that
the maximum latency should be smaller than 200 ms from
empirical testings.

B. Virtual Environment Evaluations

A virtual environment offers a safe and reproducible experi-
ment in dynamic environments, such as train stations. Such an
evaluation is usually difficult to carry out in real environments
due to safety considerations. We constructed a 3D model
of Kenmore station in Boston, MA, in which to conduct
our model evaluation (see Fig. 10). The virtual environment
included a few virtual pedestrians walking around, which
caused shadows. At that time, we did not implement a “Stop”
command when the virtual camera encountered a virtual
pedestrian. The trained deep CNN models tested in virtual
environments are shown in the supplementary video.

C. Behavior Reflex vs. Direct Perception

We further tested the model performances with the behavior
reflex and direct perception settings. We designed another
YB trail as a rectangular loop with 4 turns (2π), around 10.12



Fig. 10: Virtual prediction in Kenmore station. Left: Kenmore
station with people walking randomly. Right: Motion for
virtual prediction: Top: Go straight; Middle: Some virtual
pedestrians walking around during a left turn; Button: A right
turn under different lighting conditions.
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(b) Direct perception paradigm.
Fig. 11: Heading (yaw) estimated by a Google Tango device
mounted on the robotic guide dog over time in a rectangle
loop. (a) Behavior reflex paradigm; (b) Direct perception
paradigm. We accumulated ∆yaw from t to t+1, and found
that the direct perception paradigm was more stable.

meters in length. A Google Tango device was mounted on
the robotic guide dog for the purposes of obtaining visual
inertial odometry (VIO) as ground truth. We show the yaw-
versus-time curves of the behavior reflex and direct perception
paradigms in Fig. 11a and in Fig. 11b, respectively. The robot
heading changes, estimated by the yaw of the VIO, are used
to indicate the stability of the paradigms. The accumulated
∆yaw from t to t + 1 used as measure, and a lower value
indicates the desired overall gentler turns. The measures were
found 9.77 in the behavior reflex paradigm, and 8.68 in the
direct perception paradigm. Both paradigms tend to cause
some orientation errors compared with the ideal case (6.28
in a rectangular loop with 4 turns), but the direct perception
paradigm shows smaller measure and is more stable than
behavior reflex.

V. USER STUDIES

We conducted user studies with 10 BVI users, who did not
have prior experience with our system. All were recruited
through an association of the blind community in Taiwan.
All 10 participants were BVI (nine were blind and one was
visually impaired, who had a very limited field of view and
could not see the experimental trail). The user study was
conducted in a 4.5 m×4 m classroom, with an S-shaped (two

Fig. 12: Top: The experiment environment is designed as
a S-type map made of a yellow-blue trail. Bottom left: A
Google Tango device is hung around the neck of a participant
to record the user’s movements. Bottom, middle, and right:
The trajectories of users’ movements for the forehand and
upright grasps, respectively.

left and two right turns) experimental trail with a total length
of 15.4 m (see Fig. 12). Each participant was introduced to
the tasks and signed a consent form. They were instructed to
follow the robotic guide dog by holding a cane-like rod in two
hands, as shown in Fig. 4. The robotic guide dog was set to the
“behavior reflex” paradigm. We also instructed the participants
to respond to the experimenter when they encountered a turn.
A Google Tango device was hung around each user’s neck to
capture and record their movements, average walking speed,
and time to completion. We also used a questionnaire to
capture the users’ subjective experience.

Each participant followed and walked twice along the
experimental trail. They used a forehand grasp for their first
attempt and an upright grasp for the second attempt, which
included four left turns and four right turns in total. The
trajectories of the forehand and upright grasps are shown
in Fig. 12. All participants finished the trail-following and
correctly responded to the eight turns, except one user who
tended to hold the rod too tightly, thereby pulling the robotic
guide dog away from the trail. There were three incorrect
verbal responses: one during a right turn and two during
straight segments, caused by the drifting of the robot motions.

All 10 participants completed the questionnaires after the
experiments. The 5-point scales questionnaires were designed
to reflect the following aspects of a mobility aid: 1) real
time, 2) portable, 3) reliable, 4) cost-effective 5) friendly, 6)
interaction, 7) speed, and 8) mental map, where 1-5 were
suggested by Dakopoulos and Bourbakis [2]. For example,
the question “Do you feel reliable about the guiding robot?”
for the reliable aspect. The results in Fig. 13 show that
participants appreciated real-time guidance, reliable feedbacks,
and friendly interface without pre-training. Some participants
wanted the robotic guide dog to have stronger interaction and
faster speed, which would be a trade-off on the portability
considerations (weights of the robot). We set the cost of the



Fig. 13: Questionnaires results of the 5-point scales question-
naires.

guide dog robot to USD 500, which was acceptable for most
users. There is a high variation in the number of participants
who were able to build and draw a mental map; some could
not. Overall, the participants said the reliability was high,
which aligned well with our design considerations.

VI. CONCLUSIONS
We demonstrated a reliable robotic guide dog system,

which was able to learn and follow various man-made trails.
The proposed deep CNN approaches of learning from both
real and virtual worlds overcame the challenging scenarios
of a vision system in a real-world environment, including
illuminations, shadows, different background textures, and
interclass variations. We also tested the trained model within
the framework of a virtual environment, which made it
possible to consider safety and advance the robustness in
dynamic environments, such as a train station. The user
questionnaires indicated that the 10 BVI users favored the real-
time, reliable, friendly aspects of our proposed robotic guide
dog. In future work, we will further examine and visualize
the trained CNN models with different settings of training
data. We will also incorporate system recovery from failure,
and test the system in realistic environments, such as paved
pathway.
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